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ABSTRACT
A method of computing the fraction of matches between two nucleic acid

sequences at all possible alignments is described. It makes use of the Fast
Fourier Transform. It should be particularly efficient for very long
sequences, achieving its result in a number of operations proportional to
n ln n, where n is the length of the longer of the two sequences. Though the
objective achieved is of limited interest, this method will complement
algorithms for efficiently finding the longest matching parts of two
sequences, and is faster than existing algorithms for finding matches allowing
deletions and insertions. A variety of economies can be achieved by this Fast
Fourier Transform technique in matching multiple sequences, looking for
complementarity rather than identity, and matching the same sequences both in
forward and reversed orientations.

INTRODUCTION

It will frequently be desired to find that alignment of two nucleic acid

sequences which maximizes the number of base positions which are identical.

The straightforward algorithm for doing this is to consider in turn each of

the possible alignments, for each one running along both sequences and

Mounting for each how many bases match. If there are n bases in the first

sequence and m in the second, this will require nm comparisons of bases. This

can be a prohibitive amount of computation: if both sequences are of length

10,000, it will require 100 million comparisons.

It might be thought that it is impossible to improve substantially on

such a straightforward algorithm, but such improvement is possible. By using

the Fast Fourier Transform (FFT) introduced by Cooley and Tukey (1) and

described more extensively in Brigham (2), one can compute the number of

matches at each possible alignment in a time proportional to n ln n. In our

example involving 10,000 bases this means that the number of operations is a

small multiple of 140,000, which represents a great saving.

The algorithm enables a number of' economies, but there are two important

tasks it cannot do. It cannot confine its interest to runs of consecutive
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matches: it is inherently unable to detect whether two matches are

conseutive. It also cannot allow for insertions and deletions in doing the

matching. Needleman and Wunsch (3) and Sellers (4, 5, 6) have presented

effective methods for allowing for insertions and deletions, though their

mthods also require on the order of nm computational steps. Allen Delaney
(personal comunication) has pointed out to me that the dictionary of
oligonucleotides first constructed by Korn, Queen, and Wegman (7) can be
expanded and used to find the longest common subsequence of two nucleotide

sequences in time proportional to n ln n + a ln m.

The present algorithm is of limited interest because of the presence of

deletions and insertions in most comparisons of long nucleotide sequences, and

the probability that the homology will be confined to short regions (such as

coding sequences) whose presence might not be detectable if we look only at

the number of matches along the entire length of a sequence. However, if the

two sequences differ from each other by only a few deletions, this will be

reflected in the result as substantial partial matchings at several

neighboring aligments, and this would signal the presence of such deletions.

Delaney's algorithm may be even more effective in detecting such cases.

THE METHOD

The procedure we follow begins by reading each sequence and constructing

a series of indicators, one for each of the four bases. Each of these is an

array containing a one wherever that base exists in the corresponding

sequence, and a zero where it does not exist. For example, the sequence

AACGUGGC has the four indicator sequences:

Sequence: A A C G U G G C

Indicator for A: 1 1 0 0 0 0 0 0

Indicator for C: 0 0 1 0 0 0 0 1

Indicator for G: 0 0 0 1 0 1 1 0

Indicator for U: 0 0 0 0 1 0 0 0

When the base is at a certain position is unknown, we have followed the

practice of setting all four indicator functions to 0.25, and when we know
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only that the base is (say) a purine, we set two of the indicator functions to
0.5 and the others to zero. Let us denote the J-th entry in the indicator
function for A as X (A), and similarly for the other four bases. The
corresponding indicator function for the other sequence will be Y()

The number of matches of A's when the second sequence is displaced by k

from the first is then given by:

n

Zk(A) xj(A) yJk (A) (1)

The overall number of matches at a shift of k is given by

Zk Zk(A) + Zk(C) + Zk(G) + Zk(U) (2)

Note that the convention we have adopted for missing information implies that
when an unknown base lies opposite a known one, we count one-fourth of a

match.

The foundation of our method is the relation between convolutions and
Fourier transforms: if X and Y are sequences whose discrete Fourier transforms
are U and V, then the sequence Z giving the number of matches has the Fourier
transform W, where

wJ - Uj V, 9 (3)

where the star indicates the complex conjugate (changing the sign of the
imaginary part of the complex number V )).

Since the Fast Fourier transform algorithm allows us to compute the

Fourier transform (or to invert it) in on the order of n ln n operations, this

suggest the following procedure: compute the Fourier transforms of the
indicator functions of the two sequences. This will be eight Fourier
transforms in all. Each of these is a sequence of complex numbers. The

complex conjugates of the sequences V, ,.A., V (U) are then taken (which
can be done in n operations each). We could now use equation (3) to compute

transf'orms (A) (U)theFrr). .. ) which are the transf'orms of the

numbers of matches of A's, C's, G's and U's at all possible shifts.

Since the Fourier transform is a linear transformation, the transform of

a sum is the sum of transforms. This means that if we are interested only in
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the overall number of matches, without regard to which of the four nucleotides
is matching, we can sum the four W's to get:

W_ w (A) w (C) (G) W (U) (4)

We now take the inverse Fourier transtorm of the sequence WJ. The real parts
of the resulting sequence of complex numbers will be the numbers of matches at
shifts 0, 1, ..., n. The complex parts of the result will all be zero. We
have thus obtained the result we wanted with 9 Fourier transforms, each of
which requires on the order of n ln n operations.

There are, however, a number of complications which must be dealt with.
The FFT algorithm is most effective when the length of the sequence is a power
of two. We have followed the policy of extending our indicator sequence by
adding enough zeros to the end of each to make the length a power of two.
Thus a sequence of 18 nucleotides leads to an indicator sequence of length 32,
by adding 14 zeros at the end of each indicator array. A second problem is
that when we use this technique, the resulting numbers of matches are those
computed from equation (1), but with the addition of subscripts J+k being
carried out modulo the length of the sequence. In ettect, the sequences are
taken to be circular and are rotated past one another. To avoid this, we
double the length of the sequences by adding zeros.

A sequence of 28 bases then requires four indicator sequences, each of
length 64. It there are two sequences of length 28, the resulting sequence of
numbers of matches will have (in this case) the matches for rightwards shifts
of the second sequence by amounts 0, 1, 2, ..., 27, followed by 8 zeros, and
then the values for shifts of -27, -26, ..., -2, -1.

There are a number of inefficiencies involved. All the arithmetic uses
real numbers rather than integers, and these computations are slower and the
numbers take up as much as twice the memory space as integers. We must
compute and store nine complex sequences, so that the minimum storage
requirement is 18n reai numbers. However, the intrinsic advantage of the
algorithm is that the number of operations grows as n ln n, and it must
ultimately be faster than an algorithm which requries of the order of n
operations, provided that we take a large enough n.

COMPUTATIONAL EXPERIENCE
A program has been written in Pascal by R. K., and its performance

compared to the performance of a program written to carry out the simple
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algorithm. Both programs have been run on the same (artiticial) data set on a

DEC VAX 11/780. The results in CPU seconds are, for two sequences each of

length n:

n FFT Method Simple Method

100 2.99 0.54

1000 18.48 11.64
2000 40.16 43.77

4000 90.57 169.58

Once we have more than 1000 nucleotides, both algorithms show their predicted

dependence on n, the FFT method rising a bit faster than linearly and the
2simple matching method rising as n . Since it involves real rather than

integer arithmetic, the FFT method is slower for small data sets. The

crossover point is just below 2000 nucleotides.

A listing of the Pascal program may be obtained by writing to R. K. or to

J. F.

ADDITIONAL OBJECTIVES

One of the advantages of the FFT approach is that a variety of additional

objectives can be accomplished without much additonal computational effort.

Once the Fourier transforms of the indicator arrays have been computed, these

can be re-used in a number of ways:

(1) If we have multiple sequences, and wish to look at all possible pairs of

sequences, we can proceed from the transtorms of each sequence without the

need to recompute these. If there are s sequences, we will have to do

s(s-1)/2 back Fourier transforms, but only s forward Fourier transforms.

(2) If we wish to match two sequences with one of them in reverse orientation,

the procedure for doing this differs only at the step corresponding to

equation (3), which becomes

WJ = UJ Vi (5)

the complex conjugate of V not being taken. Thus once we have obtained the

Fourier transforms U and V, these can be used to do matching in both

orientations. Thus while it requires 9 Fourier transforms to do matching in

one orientation, it requires only 10 to do it in both orientations.
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(3) If we wish to look not only for identical bases, but for complementary

bases as well, we can again re-use the forward transforms. The number of

complementary bases at shift k is given by

n

ZkC' X(A) yJ+k (U) + X (C) yJ+k (G)

J: 1
+ x (G) y (C) + X (U) y (A)

j J+k J+k
(6)

This can be computed by, at the step corresponding to equation (3), forming

the product, not of indicator sequences of identical bases, but of

complementary bases. Thus we again do not need to recompute the forward

Fourier transforms, but only need to perform the appropriate product and do a

back transform.

If we want to look at both identity and complementarity, and at both

forward and reverse orientations, we need only 12 Fourier transforms in all.

It may be worth noting that we can use the products of transformed

sequences directly, without back transformation, to test for the statistical

significance of the amount of matching or complementarity. Such a test would

utilize standard time series statistical methods, under the assumption that

the indicator sequences could be considered as normally distributed to a

sufficient degree of approximation.

LIMITATIONS

The primary limitation of this method is that what it computes is Of

limited value. In the evolution of nucleic acid sequences, deletion and

insertion play a large role, and we do not expect to find that two sequences

differ only by a shift plus some base changes. If there are only a few

deletions expected, then it is likely that the two sequences are relatively

short, and the present methods have little advantage. It is unfortunate that
so many of the algorithms which are likely to apply to real data require
computational effort on the order of n2 or n3.

The present method may be Of sone value in exploring sequences and

looking for alignments which have a significant amount of matching or

complementarity. If there has been only one deletion, we would expect to find

two nearby alignments, both of which show significant matching or significant
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complementarity. As more and more deletions separate two sequences, the

ability to use this technique for exploratory purposes would degrade rapidly.
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